新华社报道,一枚米粒大小的太赫兹芯片,却能在人体安检仪中发挥出巨大功能。记者23日从中国电子科技集团获悉,由中国电科13所研制的首款国产太赫兹成像芯片在首届数字中国建设峰会上正式发布。由于人体自身辐射的太赫兹波信号极其微弱,因此要求太赫兹芯片具备超高灵敏度、超低噪声以及超宽频带特性,才能将人体辐射的微弱信号检测出来,从而达到成像的目的
太赫兹 编辑
太赫兹(Tera Hertz,THz)是波动频率单位之一,又称为太赫,或太拉赫兹。等于1,000,000,000,000Hz,通常用于表示电磁波频率。 太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。 [1]
中文名 太赫兹 外文名 terahertz
简 称 THz 实 质 频率单位 用于表示 电磁波频率
目录
1 历史2 定义3 特点4 应用5 前景6 技术突破
历史 编辑 早期太赫兹在不同的领域有不同的名称,在光学领域被称为远红外,而在电子学领域,则称其为亚毫米波、超微波等。在20世纪80年代中期之前,太赫兹波段两侧的红外和微波技术发展相对比较成熟,但是人们对太赫兹波段的认识仍然非常有限,形成了所谓的“THz Gap”。 2004年,美国政府将THz科技评为“改变未来世界的十大技术”之一,而日本于2005年1月8日更是将THz技术列为“国家支柱十大重点战略目标”之首,举全国之力进行研发。 我国政府在2005年11月专门召开了“香山科技会议”,邀请国内多位在THz研究领域有影响的院士专门讨论我国THz事业的发展方向,并制定了我国THz技术的发展规划。目前国内已经有多家研究机构开展太赫兹领域的相关研究,其中首都师范大学,是入手较早,投入较大的一家,并且在毒品和炸药太赫兹光谱、成像和识别方面,利用太赫兹对非极性航天材料内部缺陷进行无损检测方面做出了许多开拓性的工作,同时由于太赫兹射线在安全检查方面的独特优势,首都师范大学太赫兹实验室正集中力量研发能够用于实景测试的安检原型设备。另外,美国、欧洲、亚洲、澳大利亚等许多国家和地区政府、机构、企业、大学和研究机构纷纷投入到THz的研发热潮之中。THz研究领域的开拓者之一,美国著名学者张希成博士称:“Next ray,T-Ray !”。 定义 编辑 THz波(太赫兹波)包含了频率为0.1到10THz的电磁波。该术语适用于从电磁辐射的毫米波波段的高频边缘(300 GHz)和低频率的远红外光谱带边缘(3000 GHz)之间的频率,对应的波长的辐射在该频带范围从0.03mm到3mm(或30~3000μm)。 特点 编辑 人们关注THz技术的原因是THz射线普遍存在,是人们认识自然界的有效线索和工具。但是相对于其他波段的电磁波比如红外和微波,对它的认识和应用非常匮乏。其次,THz射线有它自身的特点。 THz 脉冲的典型脉宽在皮秒量级,不但可以方便地进行时间分辨的研究,而且通过取样测量技术,能够有效地抑制远红外背景噪声的干扰。目前,脉冲THz 辐射通常只有较低的THz 射线平均功率,但是由于THz 脉冲有很高的峰值功率,并且采用相干探测技术获得的是THz 脉冲的实时功率而不是平均功率,因此有很高的信噪比。目前,在时域光谱系统中的信噪比可达10^5或更高。 THz 脉冲源通常只包含若干个周期的电磁振荡,单个脉冲的频带可以覆盖从GHz 直至几十THz 的范围,许多生物大分子的振动和转动能级,电介质、半导体材料、超导材料、薄膜材料等的声子振动能级落在THz 波段范围。因此THz 时域光谱技术作为探测材料在THz 波段信息的一种有效的手段,非常适合于测量材料吸收光谱,可用于进行定性鉴别的工作。 THz 光子的能量低,频率为1THz的光子能量只有约4毫电子伏特,因此不容易破坏被检测物质。 许多的非金属非极性材料对THz 射线的吸收较小,因此结合相应的技术,使得探测材料内部信息成为可能。例如,陶瓷,硬纸板,塑料制品,泡沫等对THz 电磁辐射是透明的,因此THz 技术可以作为x射线的非电离和相干的互补辐射源,用于机场、车站等地方的安全监测,比如探查隐藏的走私物品包括枪械、爆炸物、和毒品等,以及用于集成电路焊接情况的检测等。极性物质对THz 电磁辐射的吸收比较强,特别是水,THz 光谱技术中应采取各种措施避免水分的影响,不过在THz 成像技术中,可以利用这一特性分辨生物组织的不同状态,比如动物组织中脂肪和肌肉的分布,诊断人体烧伤部位的损伤程度,及植物叶片组织的水分含量分布等。太赫兹成像技术与其他波段的成像技术相比,它所得到的探测图像的分辨率和景深都有明显的增加(超声、红外、X-射线技术也能提高图像分辨率,但是毫米波技术却没有明显的提高)。另外太赫兹技术还有许多独特的特性,如在非均匀的物质中有较少的散射,能够探测和测量水汽含量等等。 太赫兹光谱技术不仅信噪比高,能够迅速地对样品组成的细微变化作出分析和鉴别,而且太赫兹光谱技术是一种非接触测量技术,使它能够对半导体、电介质薄膜及体材料的物理信息进行快速准确的测量。鉴于THz射线的特点,必将给通信、雷达、天文、医学成像、生物化学物品鉴定、材料学、安全检查等领域带来深远的影响,进而改变人们的生产生活。 应用 编辑 太赫兹成像技术和太赫兹波谱技术由此构成了太赫兹应用的两个主要关键技术。同时,由于太赫兹能量很小,不会对物质产生破坏作用,所以与X射线相比更具有优势。 THz时域光谱技术 目前已经开始商业化运作,世界范围内已经有多家企业开始生产商用THz时域光谱仪,主要是中国,美国,欧洲和日本的厂家。THz时域光谱技术的基本原理是利用飞秒脉冲产生并探测时间分辨的THz电场,通过傅立叶变换获得被测物品的光谱信息,由于大分子的振动和转动能级大多在THz波段,而大分子,特别是生物和化学大分子是具有本身物性的物质集团,进而可以通过特征频率对物质结构、物性进行分析和鉴定。一个比较重要的应用可以作为药品质量监管。设想一下制药厂的流水线上安装一台THz时域光谱仪,从药厂出厂的每一片药都进行光谱测量,并与标准的药物进行光谱对比,合格的将进入下一个环节,否则在流水线上将劣质药片清除掉,避免不同药片或不同批次药片的品质差异,保证药品的品质。 THz成像技术 跟其他波段的成像技术一样,THz成像技术也是利用THz射线照射被测物,通过物品的透射或反射获得样品的信息,进而成像。THz成像技术可以分为脉冲和连续两种方式。前者具有THz时域光谱技术的特点。同时它可以对物质集团进行功能成像,获得物质内部的折射率分布。例如葵花籽可以和容易获得葵花子的内部信息。图3-4 给出了葵花籽样品的实物照片和相应方法重构的THz 透射图像,能清晰地分辨果壳的轮廓和隐藏在果壳中果仁的形状,这是最希望的。同样,如果样品是人的牙齿,那么牙齿的正常部分与损蛀部分将很容易的区分开,同时不必照射x射线,对人体没有附加伤害。 安全检查 利用安全检查应该说是现阶段最吸引人的THz技术,它的本质原理是THz成像,目前由于目前主要采用连续波THz源,而且又由于它要解决的是目前最受人关注的反恐、缉毒等最让人关注的问题,所以单列出来。目前英国发展的THz安检设备已经进入试用阶段。由于THz射线的穿透性和对金属材料的强反射特性,并且THz的高频率使得成像的分辨率更高,所以可以很容易看到隐藏在衣物、鞋内的刀具、枪械等物品。同时如果结合THz的物质鉴别特性,能够区分你身上是否携带炸药或毒品。首都师范大学THz实验室已经建立了常见的炸药和毒品的数据谱库,可以设想再过几年,可以真正在机场见到真正的THz安检的设备。另外,世界范围内引起社会动荡的自杀式炸弹恐怖袭击,也可以利用THz安检设备进行防范。因为站岗的可以不再是士兵或保安人员,而是THz安检仪,人们不需要靠近可疑分子就可以对其进行检查。 THz雷达 实际上也是成像的一种。鉴于大气中水分对THz射线的强吸收作用,所以近距离雷达是THz射线的优势所在。一个非常让人向往的应用是穿墙雷达和探雷雷达,当然也可以用于抗震救灾中遇难者的搜救,目前还处于研发阶段。这是由于墙壁,木材等材料对THz透过,而人体包含大量水分,不透过THz,因此可以透过墙壁侦查到屋内的人员的分布和活动,将反恐怖反绑架起到深远的影响,同理也可以用于废墟下人体的寻找。而探雷雷达是由于地雷一般在地表或地表附近,而干燥的泥土可以透过THz射线,而地雷将会把THz射线反射回来,从而可以发现目标。 天文学 在宇宙中,大量的物质在发出THz电磁波。 炭(C)、水(H2O)、一氧化碳(CO)、氮(N2)、氧(O2)等大量的分子可以在THz频段进行探测。而这些物质在应用THz技术以前一部分根本无法探测而另一部分只能在海拔很高或者月球表面才可以探测到。 通信技术 THz用于通信可以获得10GB/s的无线传输速度,特别是卫星通信,由于在外太空,近似真空的状态下,不用考虑水分的影响,这比当前的超宽带技术快几百至一千多倍。这就使得THz通信可以以极高的带宽进行高保密卫星通信。虽然由于缺乏高效的THz发射天线和源,使其还无法在通信领域商业化,但这必将由新型的发射装置和发射源所解决 。 太赫兹辐射 德国研究人员利用超级计算机计算发现,利用强烈的太赫兹辐射,可实现在不到万亿分之一秒内瞬间将微量水烧开。 太赫兹辐射是指频率从0.1太赫兹到10太赫兹,波长介于毫米波与红外线之间的电磁辐射区域。一太赫兹等于一万亿赫兹。 德国电子同步加速器研究所报告说,强烈的太赫兹辐射可引发水分子剧烈震动,打断水分子间的氢键。这种方法可将约一纳升(十亿分之一升)水在半皮秒(一皮秒为一万亿分之一秒)内加热至600摄氏度。 报告指出,一纳升水虽然听起来不多,但对很多实验来讲已经足够。一皮秒比一眨眼的时间还要快很多,因此这种烧开水的方法可称得上是迄今最快的。 虽然这一“烧水”法尚未投入实践,但研究人员表示,水在许多化学与生物过程中扮演重要角色,新发现或可为化学与生物领域提供更多实验可能。 [2] 生物医学 中国工程院院士杜祥琬院士指出,在所有物理技术中,电磁波技术对医学的促进作用尤其突出。从1901年X线获得第一届诺贝尔物理学奖开始,已有5项与生物医学相关的诺贝尔奖授予了X光谱技术领域。 太赫兹技术在生物医学方面的应用,生物大分子相互作用是重大生命现象与病变产生的关键动因,而太赫兹光子能量覆盖了生物大分子空间构象的能级范围。该频段包含了其他电磁波段无法探测到的直接代表生物大分子功能的空间构象等重要信息。因此,可以发展一种利用太赫兹探测和干预生物大分子相互作用过程的新理论和新技术,为当前重大疾病诊断、有效干预提供先进的技术手段。 中国工程物理研究院流体物理研究所李泽仁研究员也表示,目前通过国家对太赫兹源、探测器及成像系统等关键技术与仪器设备的大力支持,我国已基本具备开展太赫兹生物医学研究的基础。 [3] 其他 此外,太赫兹在半导体材料、高温超导材料的性质研究等领域也有广泛的应用。研究该频段不仅将推动理论研究工作的重大发展,而且对固态电子学和电路技术也将提出重大挑战。 目前,笼统的说THz技术的研究主要围绕三大部分内容展开,THz产生源、THz探测和应用研究。目前最大的困难还是没有高功率便携式连续可调的成本较低的THz发射源和满足现实要求的滤光片,另外也没有能够常温下直接探测太赫兹射线的被动式探测器。 前景 编辑 太赫兹的独特性能给通信(宽带通信)、雷达、电子对抗、电磁武器、天文学、医学成像(无标记的基因检查、细胞水平的成像)、无损检测、安全检查(生化物的检查)等领域带来了深远的影响。由于太赫兹的频率很高,所以其空间分辨率也很高;又由于它的脉冲很短(皮秒量级)所以具有很高的时间分辨率。 技术突破 编辑 2016年10月28日消息,中国航天科工集团23所已获得中国首幅太赫兹波段外场SAR图像,太赫兹波段雷达成像关键技术取得突破性成果。通过首幅太赫兹波段外场SAR图像,主要技术指标和成像算法得到了试验验证,为太赫兹雷达工程应用奠定了技术基础。不过,由于高功率太赫兹辐射源发展水平的限制,太赫兹雷达系统成像目前尚无法完全满足实际应用需求。 [4]